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Abstract

Cell nuclei detection and fine-grained classification have been
fundamental yet challenging problems in histopathology im-
age analysis. Due to the nuclei tiny size, significant inter-
/intra-class variances, as well as the inferior image quality,
previous automated methods would easily suffer from lim-
ited accuracy and robustness. In the meanwhile, existing ap-
proaches usually deal with these two tasks independently,
which would neglect the close relatedness of them. In this pa-
per, we present a novel method of sibling fully convolutional
network with prior objectness interaction (called SFCN-OPI)
to tackle the two tasks simultaneously and interactively us-
ing a unified end-to-end framework. Specifically, the sibling
FCN branches share features in earlier layers while holding
respective higher layers for specific tasks. More importantly,
the detection branch outputs the objectness prior which dy-
namically interacts with the fine-grained classification sib-
ling branch during the training and testing processes. With
this mechanism, the fine-grained classification successfully
focuses on regions with high confidence of nuclei existence
and outputs the conditional probability, which in turn bene-
fits the detection through back propagation. Extensive exper-
iments on colon cancer histology images have validated the
effectiveness of our proposed SFCN-OPI and our method has
outperformed the state-of-the-art methods by a large margin.

Introduction

In digital histopathology image analysis, cell nuclei de-
tection and fine-grained classification are crucial prereq-
uisites for cellular morphology processing, such as com-
putation of size, texture, shape, as well as other image-
nomics (Xing and Yang 2016), and furthermore assisting
the cancer malignancy diagnosis (Hamilton and Aaltonen
2000). Take the colon cancer, commonly originating from
the glandular epithelial cells, as an example, recognizing
the epithelial cells and assessing their morphologic changes
are important for grading the cancer levels and providing
guidance for therapeutic procedures (Fleming et al. 2012;
Ricci-Vitiani et al. 2007). Given that manual nuclei detection
is extremely time-consuming and suffers from high inter-
observer variance, researchers have been dedicated to ex-
ploring automatic methods to efficiently and accurately de-
tect the nuclei from histopathology images and conduct fur-
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Figure 1: Examples of the histopathology images for nuclei
detection and fine-grained classification. For clearer illus-
tration, different sub-categories of the nuclei are zoomed in
with the larger boxes, i.e., A. epithelial nuclei, B. fibroblast
nuclei, C. inflammatory nuclei, D. miscellaneous nuclei.

ther analysis such as classifying the detected nuclei into fine-
grained sub-categories (Park et al. 2013; Xie et al. 2017).

However, development of automatic digital histopathol-
ogy image analysis approach is difficult. Firstly, the size of
nuclei is quite small in histopathology images, with radius
usually only a few pixels. Secondly, sub-categories among
the nuclei have significant inter-/intra-class variances in their
shape and chromatin texture, which are related to different
histopathology grades. Thirdly, the tumorigenic cells tend to
clutter together and hold erratic morphology changes, which
would lead to complicated contexts with degenerated glan-
dular structures and hence bring obstacles to cell nuclei iden-
tification. These challenges are shown in Fig. 1. In addition,
the presence of inferior image quality caused by poor stain-
ing, unfocused photoing or failed digital sampling further in-
creases the difficulty of automatic nuclei detection and fine-
grained classification.

Early nuclei analysis methods relied on handcrafted fea-
tures based on the intensity (Wang et al. 2007; Li et al. 2010)
as well as morphology (Al-Kofahi et al. 2010; Park et al.
2013). Unfortunately, these low-level features would suffer
from limited representation capability and robustness, lead-
ing to inaccurate detections especially on hard cases such as
densely adhesive cells and malignant cells with highly het-
erogeneous shape (Xing and Yang 2016).

Recent revolution of the deep convolutional neural net-
work (CNN) has achieved great success on object detec-
tion (Girshick 2015; Ren et al. 2015) in natural images. The
state-of-the-art methods usually first suppress the majority
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of non-object regions and generate sparse region of inter-
est (ROI) proposals, and then classify them into predefined
categories and regress a refined bounding box for each de-
tected object. Though these methods have set promising per-
formance on natural images, they are hardly applicable to
histopathology images. This is because that the cell popula-
tions in a histopathology image would vary widely, rang-
ing from several to hundreds. In addition, the nuclei size
is quite small and the nuclei are only annotated with cen-
troid points. Hence, solutions based on ROI proposal and
bounding box regression would be infeasible in our appli-
cation. Many attempts of adapting CNNs on histopathol-
ogy images have also been explored (Cireşan et al. 2013;
Cruz-Roa et al. 2014; Chen et al. 2016b; 2016a). Particu-
larly, for nuclei analysis, Xie et al. (2017) proposed an ef-
ficient and robust model based on the fully convolutional
network (FCN) and set outstanding nuclei detection perfor-
mance on four histopathology datasets. The method of Sir-
inukunwattana et al. (2016) employed two sequential CNNs
to separately detect and classify the nuclei in patch-based
manner. Though achieved promising performance, this prac-
tice would detach the intrinsic association between the two
tasks and unnecessarily involve redundant computations.

In this paper, we propose to solve both tasks of nuclei de-
tection and fine-grained classification with a unified frame-
work which is learned in an end-to-end manner. Specifically,
we design an efficient FCN architecture consisted of two sib-
ling branches (referred to as SFCN). They share features in
earlier layers and hold respective higher layers targeting for
each specific task. More importantly, we propose a novel ob-
jectness prior interaction (OPI) mechanism which dynami-
cally interacts the sibling branches during learning process.
In this manner, our model sufficiently captures the close re-
latedness between the sub-tasks and hence boosts the accu-
racies of both nuclei detection and fine-grained classifica-
tion. Our main contributions are summarized as follows:
• We propose a novel architecture, i.e., SFCN-OPI, which is

able to simultaneously detect the cell nuclei and classify
them into sub-categories at high efficiency and accuracy.

• Our proposed OPI is able to effectively invoke interac-
tion between the highly correlated sub-tasks and make
our model to respect inter-task relatedness. Moreover, the
end-to-end learning which jointly optimizes the sibling
branches enables the nuclei detection and fine-grained
classification to benefit from each other.

• Extensive experiments have validated effectiveness of the
proposed SFCN-OPI, exceeding the state-of-the-art meth-
ods by a large margin.

Related work

Automatic nuclei detection from the histopathology image is
defined as acquiring the location of nuclei without depicting
the accurate boundaries (Xing and Yang 2016). It is regarded
as a prerequisite step to narrow down the interesting areas
for important following analysis including fine-grained clas-
sification of the nuclei into sub-categories.

Early studies on automatic nuclei detection and classifica-
tion can be mainly divided into groups of gradient and inten-

sity based method, morphology based method and machine
learning based method. Gradient and intensity methods took
advantages of Euclidean distance and gradient magnitude
map to select feature points in local area (Wang et al. 2007;
Li et al. 2010). In contrast, morphology based methods em-
ployed more complex geometric features to detect certain
structures of the nuclei. For examples, Park et al. (2013)
proposed a modified ultimate erosion method to separate
the overlapping convex objects relying on the contour and
shape descriptors. Al-Kofahi et al. (2010) designed a multi-
scale Laplacian of Gaussian filter with spatial constraints to
identify the nuclei. Later on, machine learning based meth-
ods aimed to build pixel/patch-wise classifiers such as SVM,
random forest, and probabilistic models (Mualla et al. 2013;
Khan, Eldaly, and Rajpoot 2013; Sommer et al. 2012),
trained with comprehensive hand-crafted features includ-
ing local intensities, gradients, global textures and shape in-
formation. However, all these traditional methods relied on
low-level features with limited representation capability and
tended to be sensitive to cell morphology changes especially
for tumorous cells.

Recently, with the advancements of feature learning, deep
CNNs have been employed for histopathology image analy-
sis to a large extent. Cireşan et al. (2013) proposed to de-
tect the mitosis by classifying the cropped small patches
with a CNN in sliding window manner. Later on, Chen et
al. (2016) proposed a cascade framework, with an FCN ar-
chitecture to first rapidly screen the candidates and another
CNN to discriminate the true positives. For nuclei anal-
ysis, Xie et al. (2015) proposed the convolutional neural
network based structured regression mode called SR-CNN,
which replaced the last CNN layer to structure regression
layer and designed a proximity mask to encode topologi-
cal structure information, achieving an accurate detection
of the nuclei from histopathology images. Based on SR-
CNN, Sirinukunwattana et al. (2016) proposed a spatially
constrained convolutional neural network (SC-CNN) which
ameliorated SR-CNN with spatial constrained layer to de-
tect the nuclei. They also built another independent CNN to
further classify the detected nuclei into four sub-categories.
This work has achieved outstanding performance on a typi-
cal histopathology image dataset, and hence we regard it as
the current state-of-the-art method for nuclei detection and
classification. However, this method used patch-based infer-
ence which would suffer from the inferior efficiency. More
importantly, it detached the highly correlated tasks of nuclei
detection and fine-grained classification and treated them in
separate networks without taking advantages of their mutual
information.

Method

FCN Architecture with Sibling Branches

Different from the previous methods which employed patch-
based training and sliding window based testing, we pro-
pose to utilize the fully convolutional network to efficiently
and accurately compute the nuclei in histopathology images.
Considering that the sub-tasks of nuclei detection and fine-
grained classification are highly correlated, we design our
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Figure 2: An overview of our proposed SFCN-OPI for nuclei detection and fine-grained classification in a unified framework.

FCN architecture with sibling branches that shares low-level
features in early layers while each aiming for a particular
task at respective higher layers. To meet the challenges of
the problem mainly due to the complicated morphological
variances of nuclei, we propose a 80-layer deep FCN, and
its detailed configurations are illustrated in Fig. 2.

To effectively train the deep FCN, we introduce the resid-
ual connections (He et al. 2016) into our network for benefit-
ing the optimization process. In each residual block xi+1 =
Wsxi + Fi(xi; {Ws}), we utilize a stack of two 3×3 con-
volutional layers followed by batch normalization (BN) and
ReLU nonlinearity to conduct the residual function Fi. The
Ws is used to downsample feature maps by 1×1 convolution
with a stride of 2, otherwise, the Wsxi is identity mapping.

Let H and W respectively represent the height and width
of the input image, it initially passes one 3×3 convolutional
layer with 32 filters followed by a BN and ReLU layer. Next,
we hierarchically stack three modules each consists of nine
residual blocks to learn representations of the histopathology
image. In the beginning of modules 2 and 3, we employ a
strided convolution to reduce the resolution while doubling
the number of the feature maps. Specifically, the sizes of
feature maps are (H , W ), (H/2, W/2), (H/4, W/4) and the
numbers of feature maps are 32, 64, 128 in modules 1, 2, 3.

In higher layers, the network construction splits into sib-
ling branches, one for nuclei detection and the other for fine-
grained classification. For the detection branch, we connect
the shared layers to a 1 × 1 convolutional layer with two
filters to obtain the highly abstract representations. Towards
accurate detection of the nuclei region, we fuse these rep-
resentations with features abstracted after the second mod-
ule with element-wise summation, which helps the network

to take advantages of the important multi-scale information.
Finally, the fused feature maps are deconvolved into original
size as the input image and forwarded to a Softmax layer so
that we obtain the objectness probability prediction for each
location in the histopathology image.

For the fine-grained classification branch, the network re-
quires richer high-level information to distinguish across the
sub-categories. In this regard, we add another module with 9
residual blocks following the shared components. In module
4 in Fig. 2, we apply a 1×1 convolutional layer with 5 filters
to convert the high dimension features into five feature maps.
After the deconvolution and Softmax operations, we obtain
five score maps, corresponding to four nuclei sub-categories
and the background. Noting that the sibling branches have
interactions during training and prediction mode, which im-
proves the performance dramatically. Details about the in-
teractions shall be described in following subsections.

Classification with Combined Objectness Prior

Previous state-of-the-art method used to firstly detect the nu-
clei with a CNN and then classify the detections into sub-
categories with a separately trained network (Sirinukunwat-
tana et al. 2016). Actually, the two tasks are highly corre-
lated, especially given that each sub-category in the classi-
fication is indeed a subset of the detection results. Force-
fully detaching the two sub-tasks would not only involve su-
perfluous computations but also prohibit the mutual benefits
that can be acquired from each other. On the other hand, the
conventional multi-task wise network design where different
tasks purely share weights in lower layers while respectively
holding independent higher layers is also not an optimal so-
lution. In these regards, we propose to resolve both prob-
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lems using a unified framework with dynamic interactions
between two sibling branches.

However, simultaneously localizing and recognizing sub-
categories of the nuclei under a unified framework is quite
challenging. Some challenging difficulties for the fine-
grained classification would come from the significant inter-
/intra-class variances (see Fig. 1) and the severe class imbal-
ance of the nuclei. More importantly, learning to distinguish
sub-categories of the nuclei should be particularly focused
on the detected objects, while excluding those massive back-
ground areas.

In this paper, we propose the objectness prior interaction
mechanism to elegantly tackle the simultaneous detection
and fine-grained classification of nuclei in histopathology
images. The core insight lies in how to obtain the classifi-
cation probability by interacting the sibling FCN. Specifi-
cally, the probability indicating objectness, output from the
detection branch, is transferred as an informative prior to
the fine-grained classification branch. In this way, the fine-
grained classification branch actually learns a conditional
probability given the confidence of objectness at each lo-
cation. In other words, this branch only needs to particularly
focus on distinguishing different nuclei sub-categories with-
out being bothered by noisy background which can be suc-
cessfully suppressed by the objectness prior. As a result, the
fine-grained classification probability is acquired in an in-
teractive manner, by combining the objectness prior and the
conditional probability obtained from sibling FCN branches.

Formally, for each location in the input image, the de-
tection branch outputs the scores pdet = {pbkg, pobj}
where the pobj indicates its probability of being the
nuclei. In the meanwhile, the fine-grained classification
branch predicts the conditional probability pcls|obj =

{pcls|obj0 , p
cls|obj
1 , ..., p

cls|obj
K }, representing the confidence

of each location being assigned to each sub-category given
the objectness prior pobj . The K denotes the number of sub-
categories and is 4 in our setting. Finally, we calculate the
fine-grained classification probability for each location as
follows:

pcls=k = pobj · pcls|objk , (1)
where k ∈ [0, 1, ...,K] denotes a particular class and k = 0
is the background. The pcls=k is the classification probabil-
ity of the location belonging to sub-category class k.

Joint Loss Function of SFCN-OPI

Towards our target to jointly learn the tasks of nuclei de-
tection and fine-grained classification, the loss function is
composed of both detection binary classification errors and
fine-grained multi-class classification errors.

Specifically, the detection error for each location is nega-
tive log-likelihood of the predicted probability. To meet the
situation of class imbalance between the nuclei and back-
ground regions, we introduce class weights into the loss:

Ldet=− 1

N

N∑
i=1

(
�(yi=0) log pbkgi + α�(yi=1) log pobji

)
(2)

where yi is the ground truth detection label of pixel i, with
yi = 0 being background and yi = 1 being the nuclei. The

pbkgi and pobji respectively present the predicted score of be-
ing background and nuclei at pixel i, and they are obtained
via Softmax function and summed up to 1. The N is the total
number of equivalent training samples during learning. The
α is weighted-loss hyper-parameter calculated according to
the proportion of positive and negative pixels in the image.

For the fine-grained classification, this branch should ide-
ally focus only on the nuclei regions and learn to assign them
into sub-categories. With our attempt to tackle detection and
classification in a unified FCN framework, particular strate-
gies have to be proposed to exclude the massive background
regions when learning the classification branch. To achieve
this, we propose to supress the loss at background regions
with low confidence of objectness. Specifically, we trans-
form the pobj into a binary mask by thresholding it, and use
the mask as a gate when calculating the fine-grained classi-
fication loss.

For each pixel j, we calculate its classification error only
if its objectness prior pobjj exceeds a predefined probability
threshold tp = 0.8. In this way, the fine-grained classifica-
tion branch is particularly focused on the high-confidence
nuclei samples, disregarding the background regions which
have been successfully addressed by the detection branch.
Formally, at pixel j, we calculate its fine-grained classifica-
tion negative log-likelihood loss as follows:

Lj
cls = −γcj�(p

obj
j >tp) · log pcls=cj

j (3)

where cj is its ground truth class-specific label, and p
cls=cj
j

is the predicted probability towards this sub-category. The
�(pobjj > tp) is the indicator function serving as the gate.
Similar to calculation of the detection errors, we also adopt
weighted loss for the classification branch to balance across
the sub-categories, and γcj is the corresponding weighted
loss multiplier for class cj ∈ [0, 1, ...,K].

Overall, by representing the parameters in the network
with W , we jointly optimize our network with sibling FCN
by minimizing the following loss function:

L = Ldet + λ
1

Ncls

∑
j

Lj
cls + β||W||22, (4)

where the first term is the detection loss, the second term
is the fine-grained classification loss, and the third term is
the weight decay. The Ncls is the number of pixels that are
counted by the objectness gate mask in calculation of the
classification loss. The λ and β are hyper-parameters to bal-
ance the three loss components.

We optimize our SFCN-OPI framework using the stan-
dard back-propagation (Rumelhart et al. 1988). With the ob-
jectness prior interaction mechanism as described in Eq. (1),
the gradients derived from the fine-grained classification
loss can flow to those layers of the detection branch, and
vice versa. In other words, those poor detection outputs with
inaccurate objectness probability can be punished not only
via the detection loss but also via the gradients from the clas-
sification branch. With this manner, the close relatedness be-
tween both sub-tasks are sufficiently taken advantages of by
the dynamic interactions during the joint learning process.
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Training Strategies and Testing Inference

To train the sibling FCN, we first need to construct two
ground truth masks which respectively annotate the regions
of nuclei and their sub-categories. The provided annotations
of the dataset are single points indicating the centroids of
the nuclei and the class-specific labels of the nuclei. In prac-
tice, we mark the positive region as a circle area centering
at the centroids of the nuclei with a small radius. This su-
pervision mask design is simple yet effective, and benefits
the network to gain translation invariance during the learn-
ing process. Some previous works designed promaxity map
where the centroids of the nuclei are given higher value than
the nuclei edges (Xie et al. 2017). Their supervision masks
to train FCN are more carefully designed, but their practice
could only employ regression loss which is not optimal for
classification, especially multi-class classification tasks.

Training strategy of the SFCN-OPI needs to be carefully
designed, since that the fine-grained classification branch
deeply interacts with the objectness prior obtained from the
detection branch. In other words, effective learning of the
fine-grained classification branch should be conditioned un-
der high-quality objectness prior heatmap. In this regard, we
divide the training process into three stages: 1) pre-training
of the nuclei detection branch; 2) pre-training of the classi-
fication branch with the shared and fixed detection layers;
3) updating the entire network jointly. The sibling branches
are well established and they dynamically interact with each
other via the OPI mechanism. In this way, the performance,
both of detection and fine-grained classification, can be fur-
ther boosted by effectively capturing the inter-task related-
ness. Our training strategy to learn the SFCN-OPI has been
experimentally validated and we shall present observation
results in the following section.

During the testing inference, given an input image, we
obtain two scoremaps (background/nuclei) from the detec-
tion branch and five scoremaps from the fine-grained clas-
sification (background/ epithelial/ fibroblast/ inflammatory/
miscellaneous nuclei) branch. To obtain the detection re-
sults, we conduct the non-maximum suppression (NMS) on
the detection scoremap to obtain the points of nuclei. When
getting the fine-grained classification results, the objectness
priors are element-wisely multiplied onto the classification
scoremaps. Each detected location is then classified into the
sub-category which has the highest probability across the
five scoremaps.

Experiment

In order to evaluate the performance of the proposed net-
work, we conduct extensive experiments on a typical cell nu-
clei dataset1 (Sirinukunwattana et al. 2016), which contains
100 hematoxylin and eosin (H&E) stained histopathology
images of colorectal adenocarcinoma with totally 29756 nu-
clei annotated at their centers for detection task. Out of these
nuclei, there are 22444 nuclei further labeled into four sub-
categories for the classification task with 34.3% of them ep-
ithelial nuclei, 31.1% inflammatory nuclei, 25.5% fibroblast
nuclei and 9.1% miscellaneous nuclei. As the dataset just

1https://www2.warwick.ac.uk/fac/sci/dcs/research/tia/data

provides the coordinates of cell centroids, in order to for-
mulate the training label form of the proposed FCN-based
network, we employ a small circle mask centered at each
centroid with 3-pixel radius as the ground truth when train-
ing.

Implementation Details

In training phase, we perform data augmentation to further
enlarge the training data. Specifically, we cropped original
images into 64 × 64 sub-images and randomly combined
zooming, rotating, shearing, horizontal/vertical filpping and
channel shifting. We used Xavier uniform initializer (Glorot
and Bengio 2010) to initialize all weights and set initial bias
as zero. We used stochastic gradient descent with Nesterov
momentum as the optimizer, with a batch size of 200, the
momentum of 0.9, and weighted decay of 0.0001. We set
the initial learning rate as 0.01, and decayed it to 0.001 at
100 epochs and 0.0001 for the next 50 epochs. We trained
our model with a NVIDIA Titan Xp GPU which took about
6 hours for training convergence. The 100 histopathology
images were randomly divided into training, validation, and
test sets at a ratio of 7: 1: 2.

Evaluation Metrics

We harness the evaluation metrics used in Sirinukunwattana
et al. (2016) to validate our experimental results and facil-
itate comparison. As for detection, we use precision, recall
and F1 score to evaluate the performance of various meth-
ods. Same as Sirinukunwattana et al. (2016), we consider the
prediction results located in a circle centered at a cell cen-
troid with 6-pixel radius as true positive (TP). All detected
points outside these regions are considered as false positive
(FP). Each mask region corresponded to an annotated point
which does not contain any detected point is considered as
a false negative (FN). As for classification, we use weighted
average of the precision, recall and F1 score of each class
of nuclei to evaluate the performance of various methods.
The weights are the percentages of different classes in the
total labeled nuclei (please refer to the first paragraph of this
section).

Experimental Results

Effectiveness of objectness prior interaction. The chal-
lenge to combining nuclei detection and fine-grained clas-
sification is how to leverage the relatedness between two
tasks to acquire more distinguishing features for classifi-
cation, where large inter-/intra-class variances and massive
noisy background exist. In order to assess the effectiveness
of the proposed training schemes, particularly the OPI mech-
anism, we first conduct a set of ablation experiments. We
employ three networks in these experiments. 1) We train a
single FCN to directly classify each pixel of the image into 5
classes (4 nuclei sub-categories and the background), called
FCN-5CLS. It basically utilizes the same network architec-
ture as the SFCN-OPI, with the only difference being that
the FCN-5CLS has no sibling branches. Its detection perfor-
mance is calculated by summing up the probability maps of
the four sub-categories of nuclei. Weighted loss is also intro-
duced to facilitate training and the multiplier for each class
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Table 1: Experimental results of ablation analysis, different
training strategies of our method and comparison with other
approaches.

Methods Detection Classification

P R F1 P R F1

FCN-5CLS 0.741 0.867 0.790 0.466 0.264 0.298
SFCN 0.784 0.844 0.807 0.450 0.561 0.496

SFCN-OPI-1 0.764 0.890 0.816 0.573 0.667 0.613
SFCN-OPI-2 0.788 0.885 0.828 0.674 0.759 0.711

SSAE 0.617 0.644 0.630 - - -
LIPSyM 0.725 0.517 0.604 - - -
CRImage 0.657 0.461 0.542 - - -
SR-CNN 0.783 0.804 0.793 - - 0.683
SC-CNN 0.781 0.823 0.802 - - 0.692

Ours 0.819 0.874 0.834 0.718 0.774 0.742

Note: the - means the results were not reported by that method.

is obtained according to the pixel proportions of different la-
bels. 2) We train a network which has two FCN branches for
detection and classification respectively, but there is no OPI
involved during the training (SFCN). The classification loss
of SFCN is calculated only for the pixels close to the ground
truth. 3) The last one is our proposed SFCN-OPI with both
sibling branches and OPI (Ours in Table 1).

In Table 1, the FCN-5CLS yields lowest F1 score for both
detection (0.790) and classification (0.298). This is because
the large inter-/intra-class variances and the massive back-
ground regions increase the difficulty to acquire discrimina-
tive representations of the nuclei for accurate classification.

Compared with FCN-5CLS, the SFCN achieves striking
improvement of the F1 score for classification task, boost-
ing it from 0.298 to 0.496. This is because the classifica-
tion loss is calculated only for the pixels close to the ground
truth, which weakens the massive background influence and
forces the classification branch to focus on distinguishing
the inter-class variance among nuclei sub-categories. The
the detection F1 also slightly improves from 0.790 to 0.807.
The underlying reason is that, the nuclei detection task and
fine-grained classification task are highly correlated. In this
regard, sharing weights in early layers between two FCN
branches can benefit the training of both branches.

Compared with FCN-5CLS and SFCN, the results of our
proposed SFCN-OPI achieve significant improvement, at-
taining F1 score of 0.834 and 0.742 for detection and classi-
fication, respectively. Rather than SFCN which directly ap-
plies the regions near ground truth to calculate the classifi-
cation loss, SFCN-OPI dynamically chooses locations with
high objectness probability to calculate the classification
loss. The locations with high objectness probability vary in
different training iterations, so that wherever there exist false
positive regions in detection branch, there would also receive
extra penalties from the classification loss. By dynamically
selecting high-confidence nuclei regions to take into account
in the classification loss, the proposed SFCN-OPI effectively
suppresses hard false positives as well as massive noise of
large background regions. It learns more accurate objectness

prior probability, which in turn contributes to learning more
precise conditional classification probability.
Experiments of different training strategies. We further
test the effectiveness of different training strategies on the
proposed SFCN-OPI. To obtain a comprehensive insight on
the interaction of the two branches, we train our network in
three different training strategies: 1) initially train detection
branch, and then freeze the detection branch and train the
fine-grained classification branch (SFCN-OPI-1); 2) train
detection branch firstly, and then jointly train the whole net-
work (SFCN-OPI-2); 3) train detection branch firstly, next
freeze detection branch and train classification branch, and
finally jointly train the whole network (Ours).

In Table 1, compared with the SFCN-OPI-1, the SFCN-
OPI-2 improves the F1 score of classification from 0.613 to
0.711. The difference between these two strategies is that
the latter setting has a joint training step, which allows the
shared weights in early layers to be optimized by the losses
of both branches through the back-propagation procedure.
Moreover, our proposed strategy further improves the F1
score of classification to a large extent (achieving 0.742).
The difference between SFCN-OPI-2 and ours is that the
latter has a seperete classification pre-training step, which
gives the classification branch a relatively better initiliza-
tion before joint training. Results validate that balancing
the learning difficulties of sub-tasks to a comparable level
helpes to sufficiently leverage the benefit of OPI mechanism.
Comparison with other methods. We then compare our
SFCN-OPI with five well-established or state-of-the-art
methods on the same dataset. We compare our detection re-
sults with above methods and further compare our classifica-
tion results with those of two state-of-the-art methods, which
deal with, albeit separately, both detection and classifica-
tion tasks. Three of them are based on stacked autoencoder
or hand-crafted features (Xu et al. 2016; Kuse et al. 2011;
Yuan et al. 2012) while other two are deep CNN based meth-
ods (Sirinukunwattana et al. 2016; Xie et al. 2015). We em-
ploy the results of these methods on the same dataset re-
ported in (Sirinukunwattana et al. 2016) for the compari-
son. Specifically, Xu et al. (2016) harnessed unsupervised
stacked sparse autoencoder (SSAE) while Kuse et al. (2011)
and Yuan et al. (2012) leveraged a local isotropic phase sym-
metry measure (LIPSyM) and a hierarchical multiresolu-
tion model (CRImage) for detection task, respectively. Xie
et al. (2015) developed a CNN based structure regression
model (SR-CNN) and Sirinukunwattana et al. (2016) pro-
posed a spatially constrained convolutional neural network
(SC-CNN) based on SR-CNN, which regresses the likeli-
hood of a pixel being the nuclei based on constrains of spa-
tial prior and then training another CNN independently to
classify nuclei into sub-categories after detection. The SC-
CNN performed both detection and classification tasks and
achieved state-of-the-art results.

It is observed that the three CNN-based approaches, in-
cluding ours, achieve much higher F1 scores for detec-
tion than the approaches based on hand-crafted features
or stacked autoencoder, demonstrating the features learned
from deep CNNs are more discriminative than hand-crafted
features and the features learned from shallow unsupervised
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(a) FCN-5CLS (b) SFCN (c) SFCN-OPI-1 (d) SFCN-OPI-2 (e) Ours

Figure 3: Typical results of our nuclei detection (first row) and fine-grained classification (second row). In the first row, yellow
dots represent our predicted results and the green circles indicate the ground-truth. In the second row, dots and circles in different
colors indicate different sub-categories (navy blue: epithelial nuclei, green: fibroblast nuclei, light blue: inflammatory nuclei,
yellow: miscellaneous nuclei).

networks. Furthermore, our approach achieves the highest
F1 score in both sub-tasks, which corroborates the effec-
tiveness of leveraging highly correlated information by the
objectness prior interaction. Our approach also outperforms
the SR-CNN and SC-CNN in classification task by a large
margin, improving the F1 score from 0.692 to 0.742. Note
that our SFCN-OPI-2 also achieves better classification re-
sult than that of both SR-CNN and SC-CNN, further demon-
strates the advantages of joint training with OPI over sepa-
rate training of detection and classification networks.

Qualitative results. We further provide some typical re-
sults of detection and classification, as shown in Fig. 3. The
first row in Fig. 3 shows detection results of different net-
works with various training scheme. The detected nuclei are
marked by yellow dots and the ground truths are denoted as
green circles. The magnified region enclosed with a black
box clearly shows that our method successfully eliminates
some hard false positives that cannot be well tackled by
other networks. This is because that these hard samples re-
ceive stronger penalty not only from the detection branch
but also from the fine-grained classification branch through
the joint loss function. The second row shows fine-grained
classification results where we employ different colors to de-
note different nuclei sub-categories. The magnified region
highlights the results of epithelial and miscellaneous nuclei
(marked by navy blue and yellow), which are significant for
colon cancer diagnosis but have high degree of pleomor-
phism and quite challenging to be accurately identified. Our
method achieves an obvious improvement of identification
compared with other networks. It illustrates that the OPI
mechanism can greatly improve the performance of fine-
grained classification by extensively exploiting the related-

ness of the detection and classifications tasks.

Conclusion

In this paper, we propose a novel framework, i.e, SFCN-
OPI, aiming to conduct both cell nuclei detection and fine-
grained classification using a unified architecture. Our de-
signed network consists of two sibling branches, with each
outputting predictions for a specific sub-task. To sufficiently
take advantages of the relatedness between the detection and
fine-grained classification tasks, we dynamically interact the
two branches during the learning process by transferring the
objectness prior from nuclei detection to classification. The
joint learning of the entire framework enables both sub-tasks
to enjoy mutual benefits from each other and hence improve
their prediction accuracies. Extensive experiments validate
the efficacy of our method and the effective training strate-
gies in practice. Experimental results on colon glandular
cancer dataset demonstrates the outstanding performance of
our SFCN-OPI, exceeding the state-of-the-art approaches by
a significant margin. Last but not least, our proposed frame-
work, as well as the spirit of respecting the relatedness in the
multi-tasks network design, is general and can be extenable
to many other histopathology image analysis problems.
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